DDS: прямой цифровой синтез частоты - Источник тактового сигнала

Источник тактового сигнала

 

Важнейшими характеристиками источника тактового сигнала являются нестабильность частоты (в PPM), джиттер (в пико- или наносекундах) и фазовый шум (в dBc/Гц, т.е., относительно уровня несущей).

Источник тактового сигнала DDS является главным источником фазовых шумов, даже несмотря на эффект их уменьшения в процессе деления частоты в DDS (рис. 7). Фазовый шум выходного сигнала DDS теоретически меньше фазового шума тактового сигнала на 20log(FCLK/FOUT) dB. На практике это улучшение ограничено шумовым порогом схем DDS. Типичным для собственного фазового шума DDS является значение -130 dBc/Гц при расстройке на 1 КГц от выходной частоты. Если источник тактового сигнала имеет меньшие фазовые шумы, на выходе DDS все равно не может быть получено их меньшее значение. Поэтому эту величину называют «остаточный фазовый шум».

 

Фазовый шум и джиттер на выходе DDS

Рисунок 7. Фазовый шум и джиттер на выходе DDS

Относительное отклонение частоты на выходе DDS равно относительному отклонению частоты тактового сигнала. Относительный джиттер при делении частоты становится меньше, хотя абсолютное значение джиттера не улучшается.
Некоторые типы DDS, которые способны работать на высоких тактовых частотах, имеют встроенный умножитель частоты на основе PLL. Для высокоскоростных DDS он позволяет использовать менее высокочастотный опорный генератор или вовсе обойтись уже имеющимися в системе тактовыми частотами. Примерами таких DDS могут служить AD9852 и AD9854, где тактовая частота может быть умножена на 4x – 20x, а AD9851 имеет умножитель на 6x. Однако использование умножения тактовой частоты не всегда желательно, так как при этом фазовый шум тактового сигнала увеличивается во столько же раз, во сколько раз умножается частота. Более того, выше частоты среза петлевого фильтра PLL может наблюдаться пик фазовых шумов (рис. 8). Несмотря на ухудшение характеристик, встроенный умножитель частоты удешевляет систему и может быть использован в большинстве случаев.

Для особо критичных к чистоте спектра выходного сигнала приложений требуется непосредственное тактирование DDS от высококачественного опорного генератора.

Типичный фазовый шум DDS

Рисуок 8. Типичный фазовый шум DDS

Значение выходной частоты и частотное разрешение

Выше приводилась формула, связывающая тактовую частоту, код частоты и разрядность аккумулятора фазы с выходной частотой. Можно сказать, что тактовая частота делится на величину 2N/M. Поскольку N и M – целые числа, из формулы следует, что требуемая выходная частота, например, 20 МГц, точно может быть получена далеко не всегда. В то же время может быть получена весьма близкая частота, отстоящая от требуемой не дальше шага перестройки, например, 19.9999999954 МГц или 20.000000009 МГц. Такая погрешность вряд ли имеет значение на практике. Если все же по каким-то причинам требуется получить точное значение частоты, то сделать это можно соответствующим выбором тактовой частоты. Существует также гибридный синтезатор, где в качестве опорного генератора DDS используется VCXO, подстраиваемый с помощью PLL в зависимости от отклонения выходной частоты. Такая структура позволяет получить на выходе точные значения частот, правда шаг сетки будет такой же, как и у обычных PLL синтезаторов. Вследствие применения VCХO фазовый шум такого гибридного синтезатора будет намного меньше, чем у обычного PLL синтезатора.

Скорость перестройки частоты

Для того, чтобы перестроить DDS по частоте, необходимо перезагрузить регистр частоты. Учитывая его высокую разрядность, это требует затрат времени микроконтроллера, особенно если DDS имеет последовательную шину управления. Поэтому скорость перестройки DDS по частоте определяется в основном быстродействием его цифрового интерфейса.
В некоторых случаях, например при осуществлении FSK модуляции, требуется максимальная скорость перестройки. Для таких целей во многих DDS имеются два отдельных регистра частоты, которые могут переключаться логическим сигналом. Этот сигнал
фактически является входом модуляции FSK. Примером таких DDS являются AD9852, AD9853, AD9835 и другие.
В некоторых случаях могут возникнуть проблемы с тем, что резкое переключение с одной частоты на другую при FSK модуляции вызывает появление побочных компонентов, которые расширяют спектр выходного сигнала. Для решения этой проблемы применяют метод, называемый Ramped-FSK. Правильнее не резко переключаться между частотами, а плавно переходить с одной частоты на другую. AD9852 имеет встроенную возможность осуществлять Ramped-FSK, пользователь может программировать скорость перехода с одной частоты на другую.

Усечение кода фазы

Аккумулятор фазы DDS имеет типичную разрядность 32 или 48 бит. Но только часть разрядов используется для адресации ПЗУ с таблицей синуса. Это вынужденная мера, вызванная необходимостью уменьшения размеров ПЗУ до разумных пределов. Действительно, если бы использовались все 32 бита, а каждый отсчет в ПЗУ кодировался бы одним байтом, то необходимый объем ПЗУ составил бы 4 Гб! Поэтому для адресации ПЗУ используется только несколько старших разрядов аккумулятора фазы. Усечение кода фазы является внутренней операцией DDS и снаружи изменить ничего нельзя. Отбрасывание младших битов приводит к возникновению ошибки в представлении фазы. Как следствие, это приводит к появлению погрешности амплитуды при преобразовании фазы в амплитуду, которое имеет место в DDS. Более того, эта погрешность является периодической, так как в зависимости от кода частоты чаще или реже состояния аккумулятора фазы повторяются. В результате в спектре выходного сигнала появляются отдельные составляющие, вызванные усечением кода фазы. На распределение фаз и амплитуд этих составляющих влияют три фактора:
• разрядность аккумулятора фазы (A бит)
• разрядность слова фазы после усечения (P бит)
• значение кода частоты (T)

При некоторых значениях кода частоты составляющие, вызванные усечением кода фазы, отсутствуют вовсе, в то время при некоторых других значениях кода частоты эти составляющие имеют максимальный уровень. Когда величина A-P равна 4 и более (это обычно для реальных DDS), максимальный уровень составляющих, вызванных усечением кода фазы, достаточно точно можно определить как - 6.02·P dB. Например, 32-разрядный DDS с 12-разрядным кодом фазы имеет максимальный уровень этих составляющих –72 dB. Причем наихудшим является случай, когда наибольший общий делитель T и 2(A-P) равен 2(A-P-1). Другими словами, когда в отбрасываемой части кода фазы всегда старший бит равен 1, а все остальные биты равны 0. Другой предельный случай соответствует отсутствию составляющих. При этом наибольший общий делитель T и 2(A-P) должен быть равен 2(A-P). Другими словами, когда в отбрасываемой части кода фазы всегда все нули. Все другие значения кода частоты дают промежуточные уровни составляющих, вызванных усечением кода фазы.

Частотное распределение составляющих, вызванных усечением кода фазы, не может быть так просто проанализировано, как их максимальная амплитуда. Рассматривая вопрос на качественном уровне, можно сказать, что усечение фазы приводит к появлению ошибки фазы, величина которой меняется по пилообразному закону. Сигнал ошибки появляется в результате отбрасывания битов кода фазы. Поэтому для того, чтобы вычислить частоту этого сигнала, можно рассмотреть только ту часть аккумулятора фазы, которая отбрасывается при
усечении кода фазы. Разрядность этой части аккумулятора равна числу отбрасываемых битов (B), соответственно, она способна воспринимать только младшую часть кода частоты с разрядностью В. Тогда частота пилообразного сигнала ошибки будет равна FCLK·(ET/2B), где FCLK – частота дискретизации, ET – эквивалентный код частоты, представленный значением отброшенных битов, если выполнить усечение полного кода частоты, B – разрядность ET (количество отброшенных битов). При этом необходимо учитывать, что частота пилообразного сигнала или ее гармоники могут лежать на частотах выше FCLK/2, тогда они способны попасть в рабочую область частот в результате зеркального отображения спектра относительно частот n·FCLK.

На рис. 9 приведены зависимости уровня побочных компонентов от разрядности кода фазы для ЦАП разной разрядности. Неограниченно наращивать разрядность кода фазы нет необходимости еще и потому, что снижение уровня побочных компонентов происходит только до определенного значения, зависящего от уровня шумов квантования ЦАП. На практике разрядность кода фазы должна быть на 2-3 разряда больше, чем разрядность примененного ЦАП.

Уровень побочных компонентов в зависимости от разрядности кода фазы

Рисунок 9. Уровень побочных компонентов в зависимости от разрядности кода фазы

Следует отметить, что существуют методы уменьшения влияния усечения кода фазы, основанные на добавлении к фазовой информации псевдослучайного шума. Таким образом удается уменьшить энергию соответствующих побочных компонентов, зато при этом увеличивается общий шумовой порог.

 

Печать

  • Просмотров: 29823

Авторизация