Последние комментарии

Зарядное устройство для Ni-Cd аккумуляторов

    В статье описаны импульсный стабилизированный сетевой блок питания  на основе микросхемы серии VIPer и питаемое им «интеллектуальное» зарядное устройство на специализированной микросхеме МАХ713СРЕ.

    Основные технические характеристики

Интервал входного напряжения, В..................150...250
Номинальная частота преобразования, кГц................60
Выходное напряжение, В...........6
Номинальный ток нагрузки, А........1
Среднеквадратическое значение пульсаций выходного напряжения, мВ, не более.....................15
КПД, %.........................82
Габариты (без сетевой вилки), мм ................70x48x36

    БП защищен от замыканий в нагрузке. Его можно использовать для питания другой аппаратуры (переносные радиоприемники и магнитофоны, плейеры, телефонные автоответчики, цифровые устройства и т. п.), батарейный отсек которой рассчитан на четыре элемента питания типоразмера АА. При необходимости выходное стабилизированное напряжение можно изменить в интервале 3...9 В без перемотки импульсного трансформатора.

Схема блока питания
Рис. 1

   Схема БП показана на рис. 1. Основной элемент устройства — специализированная микросхема VIPer12A, производимая в корпусах DIP-8 и SO-8 (для поверхностного монтажа). Сведения о микросхеме можно найти в рекомендованном там программном обеспечении проектирования VIPer Designe Software/ Documentation/Datasheet/VIPer12A.  Особенности используемой микросхемы — встроенный генератор фиксированной частоты преобразования 60 кГц, что позволяет свести к минимуму число элементов "обвязки", а также узел регулирования предельного значения стокового тока в микросхеме внешним положительным напряжением. В отсутствие этого напряжения VIPer12A обеспечивает ограничение тока на уровне 0,4 А. В устройстве на вывод 3 FB (FeedBack — обратная связь) через стабилитрон VD2 подано напряжение питания микросхемы DA1 (приблизительно 24 В). Входной ток по входу FB не должен превышать 3 мА. Увеличение входного тока приводит к уменьшению амплитудного значения тока стока (и наоборот) с коэффициентом усиления около 320. В результате сравнения напряжения на обмотке связи II трансформатора Т1 с напряжением стабилизации стабилитрона VD2 коэффициент заполнения коммутирующих импульсов изменяется так, чтобы выходное напряжение оставалось стабильным. При изменении сетевого напряжения в интервале 150...250 В отклонение выходного напряжения от номинального не превышает 0,1 В.

    Назначение остальных элементов БП ничем не отличается от аналогичных, в описанных ранее подобных устройствах.
Все детали смонтированы на печатной плате из односторонне фольгированного стеклотекстолита. Чтобы уменьшить создаваемые БП помехи, со стороны печатных проводников через надежный изолятор прикрепляют электростатический экран из жести с размерами печатной платы, электрически соединенный с общим проводом (с минусовым выводом диодного моста VD1). Для этого можно использовать тот же односторонне фольгированный стеклотекстолит, из которого изготовлена печатная плата.

   С целью уменьшения габаритов в устройстве применены импортные оксидные   конденсаторы.    Конденсаторы С1— СЗ, С7, С8 — керамические или пленочные на номинальное напряжение не менее 630 В, остальные — керамические на напряжение не менее 50 В. Резисторы — МЛТ или подобные. Дроссель L2 — высокочастотный малогабаритный ДПМ-2,4. Диодный мост S1WB40 (VD1) с предельным током 1 А и допустимым обратным напряжением 400 В заменим любым другим с аналогичными параметрами, при этом потребуется изменить конфигурацию печатных проводников или соответствующим образом отформовать выводы моста. Диод FR207 (VD3) допустимо заменить отечественным КД257Д. При подборе аналога рекомендуемого диода КД212АМ (VD4) следует учитывать, что для него обратное напряжение в устройстве заметно превышает 100 В.

    В выходном выпрямителе использован диод Шотки 1N5822 (VD5) с максимальным током 3 А и допустимым обратным напряжением 40 В. Он вполне звменим отечественным с подобными параметрами. Эффективность стабилизации выходного напряжения обеспечивается параметрами стабилитрона. Вместо указанного на схеме можно применить стабилитрон КС224Ж. Если использовать составной стабилитрон из отечественных серии Д814 и подобных, стабильность напряжения будет звнижена. Изменять выходное напряжение БП можно простым подбором стабилитрона или его переключением.

    В устройстве применена микросхема VIPer12A в корпусе SO-8. По техническим условиям все четыре стоковых вывода 5—8 должны быть припаяны к медной фольге печатной платы площадью не менее 200 мм2. При окружающей температуре 25 °С расчетная температура корпуса микросхемы не будет превышать 72 °С.

    Дроссель сетевого фильтра L1 изготовлен на основе броневого магнитопровода Б14 с магнитной проницаемостью 1500...2000. Обмотки дросселя имеют одинаковое число витков. Их наматывают проводом ПЭВ-2 0,41 в двухсекционном каркасе (каждая — в своей секции) до заполнения.

    Импульсный трансформатор рассчитан с помощью программы VIPer Designe Software. Для него используют магнитопровод КВ8 из феррита М2500НМС1 со стандартными каркасом и монтажными клипсами. С каркаса удаляют щеку, свободную от выводов, и половину выводов. Обмотку III, содержащую пять витков провода ПЭВ-2 диаметром 1 мм, наматывают отдельно на оправке подходящего диаметра, а затем одевают на обмотку I.1, состоящую из 31 витка провода ПЭВ-2 0,41. Поверх обмотки III наматывают обмотку I.2 из 27 витков провода ПЭВ-2 0,41 и самую верхнюю — обмотку II из 19 витков провода ПЭВ-2 0,12. Слои витков полуобмоток I.1 и I.2 изолируют одним слоем, а обмотки — двумя-тремя слоями пленки, используемой в высоковольтных конденсаторах, или другого, желательно термостойкого изоляционного материала.

    Трансформатор собирают с зазором 0,02 мм на боковых стенках, который обеспечен прокладкой из той же самой пленки. Расчетное значение индуктивности обмотки I трансформатора Т1 — 3210 мкГн, измеренное — около 3530 мкГн. Обмотку III выводом 8 впаивают в плату, а свободный вывод 7 соединяют навесным способом с анодом диода VD5, установленного перпендикулярно плате (как и большинство остальных элементов). Выводы 2 и 3 обмоток 1.1 и I.2 трансформатора Т1 подпаивают к одному из выводов каркаса. Затем этот вывод каркаса укорачивают на 1,5...2 мм и изолируют нитрокраской. В плату его не запаивают.

    Устройство налаживания не требует, но перед первым включением желательно убедиться в качественном изготовлении импульсного трансформатора (эту операцию выполняют до монтажа микросхемы DA1 в БП), а также в правильности монтажа и исправности используемых элементов. Чтобы обеспечить частоту коммутирующих импульсов 60 кГц, параллельно конденсатору С4 в приборе подпаивают еще один емкостью 160...180 пФ. Параллельно резистору R9 подсоединяют осциллограф. Прибор подключают к импульсному трансформатору. К выходу БП подсоединяют эквивалент нагрузки. Плавно увеличивая с помощью лабораторного автотрансформатора сетевое напряжение на входе устройства, наблюдают осциллограмму. При сетевом напряжении 220 В на эквиваленте нагрузки должно быть примерно 6 В, а амплитуда наблюдаемых на экране осциллографа пилообразных импульсов   тока   не   должна   превышать 0,25 А. Увеличивая сетевое напряжение до 250 В, убеждаются в отсутствии насыщения магнитопровода.

    Кроме того, проверяют фазировку обмотки II, для чего измеряют напряжение на конденсаторе С6 БП, которое должно соответствовать примерно 25 В. Контролируя форму импульсов на стоке транзистора VT2 в приборе, убеждаются в эффективности функционирования демпфирующей цепи VD3C7R1 БП, после чего прибор отключают, а на плату БП устанавливают микросхему DA1. Устройство готово к использованию.

Схема зарядного устройства
Рис. 2

   Стабилизированное напряжение 6 В через разъем XS1 подают на вход ЗУ, схема которого показана на рис. 2. Поскольку обычно используют только один конкретный тип аккумуляторов, не имеет особого смысла выполнять устройство универсальным. Описываемый вариант "интеллектуального" ЗУ рассчитан на зарядку Ni-Cd аккумуляторов емкостью 1000 мА-ч. Основа устройства — специализированная микросхема МАХ713СРЕ фирмы Maxim.

   В предлагаемом устройстве можно быстро заряжать один или два аккумулятора (в зависимости от положения переключателя SA1) током 1,1 А, который приблизительно численно равен его емкости. Таймер устройства ограничивает время быстрой зарядки до 66 мин. Погрешность установки таймера — ±15 %, она определяется конструктивными особенностями микросхемы.

   По мнению автора, одновременная зарядка двух аккумуляторов целесообразна только в экстренных случаях, когда важно хотя бы частично их зарядить, не добиваясь полной заряженности. Связано это с используемым в микросхеме методом обнаружения окончания зарядки по уменьшению напряжения на аккумуляторе на 2,5 мВ по отношению к его максимальному значению (так называемый метод AV). Очевидно, что даже специальным подбором весьма трудно достичь абсолютно равную емкость элементов в батарее. Если емкость заряжаемых аккумуляторов значительно отличается, уменьшение напряжения на одном из них, с меньшей емкостью, может быть воспринято микросхемой, как момент окончания быстрой зарядки. В этом случае для достижения действительно полной заряженности батарею необходимо еще в течение нескольких часов дозаряжать малым током.

    Кроме того, микросхема позволяет за 22 мин проводить так называемую сверхбыструю зарядку током, в 4 раза превышающим емкость аккумулятора. Но здесь следует учитывать тот факт, что ни один производитель не гарантирует длительное сохранение технических характеристик аккумуляторов при такой зарядке. Поэтому объективно обоснованным максимальным можно считать зарядный ток, численно равный емкости аккумулятора

    Алгоритм функционирования зарядного устройства весьма прост. После присоединения заряжаемой аккумуляторной батареи и включения напряжения питания загорается светодиод HL1 "Питание". Микросхема DA1 включает таймер зарядки и измеряет напряжение, приведенное к одному элементу батареи. Если оно менее 0,4 В, включается режим дозарядки малым током, приблизительно равным 30 мА. Как только измеряемое напряжение превысит указанный порог автоматически включается режим быстрой зарядки током 1,1 А (это значение определяется сопротивлением резистора R5), открывается полевой транзистор в микросхеме, сток которого подключен к выводу 8, и загорается светодиод HL2 "Быстрая зарядка". И при дозарядке, и в случае быстрой зарядки микросхема измеряет падение напряжения на датчике — резисторе R5 и открывает регулирующий транзистор VT1 ровно настолько, насколько это требуется для создания необходимого падения напряжения (при быстрой зарядке — 0,25 В) на датчике тока. Стабилизация тока, таким образом, допускает некоторую нестабильность напряжения питания устройства, но "провалы" напряжения ниже допустимого уровня должны быть исключены, поскольку это может нарушить нормальное функционирование микросхемы.


   В процессе зарядки через каждые 42 с ток зарядки выключается на 5 мс и микросхема измеряет напряжение на заряжаемой батарее, "запоминая" динамику его изменения во времени. При подходе к моменту, соответствующему полной зарядке, напряжение на батарее перестает увеличиваться, а затем начинает уменьшаться. Как только напряжение, приведенное к одному аккумулятору, уменьшится на 2,5 мВ, быстрая зарядка сменяется режимом дозарядки. То же самое произойдет, если истечет установленное таймером время или напряжение на аккумуляторе превысит 2 В. Это значение задают напряжением на выводе 1 микросхемы DA1, в нашем случае на него подано образцовое напряжение с вывода 16, равное 2 В. В режиме дозарядки батарея может находиться сколь угодно долго.

   С микросхемой следует обращаться осторожно. Несмотря на отсутствие в фирменной документации каких-либо предупреждений об опасности воздействия статического электричества, практика показала, что она ему подвержена в очень большой степени. Более того, некоторые радиолюбители, использовавшие ранее КМОП микросхемы с защитными диодами на входах, могли привыкнуть к тому, что их можно впаивать паяльником с рабочим напряжением 220 В. Однако следует помнить, что микросхема МАХ71ЗСРЕ, по сути, — микроконтроллер и прикосновение к выводам паяльником с рабочим напряжением 220 В из-за наводок сетевого напряжения может оказаться для нее убийственным! Поэтому целесообразно микросхему устанавливать на плату через переходную панель после окончательного завершения всех монтажных работ. Если потребуется изменить подключение выводов программирования или положение переключателя SA1, делать это следует только при выключенном напряжении питания.

   ЗУ налаживания не требует, смонтировано оно на печатной плате из односторонне фольгированного стеклотекстолита.  Резистор R5 — импортный, остальные — МЛТ-0,125 или подобные. Оксидные конденсаторы — любые отечественные или импортные, керамические конденсаторы С2, СЗ на номинальное напряжение 50 В и более. Кроме указанного на схеме, можно использовать любой другой транзистор с коэффициентом передачи тока не менее 50, допустимым током коллектора не менее 3 А и напряжением насыщения не более 1,5 В при токе 1 А. Установлен он на теплоотводе размерами 40x32x8 мм. Когда заряжают один аккумулятор, на транзисторе рассеивается мощность около 4 Вт, поэтому для облегчения его теплового режима в корпус устройства встроен малогабаритный вентилятор обдува, который при напряжении питания 6 В вращается бесшумно, но весьма эффективно. Если устройство использовать всегда для зарядки двух аккумуляторов, вентилятор можно не устанавливать. Конечно, допустимо обойтись вообще без вентилятора, но размеры теплоотвода и соответственно корпуса устройства в этом случае придется увеличить.

   При зарядке одного аккумулятора в отсек вместо другого устанавливают замыкающую заглушку либо к свободным зарядным клеммам подключают амперметр на 2...3 А.

   Автор: С. КОСЕНКО, г. Воронеж 

Печать E-mail

Избранное "Устройства на AVR"

Предлагаемое устройство собрано на микроконт­роллере. Оно имеет меньшие габариты и более простую конструкцию, что позволит установить его на моделях автомобилей или других электрофицированных игрушках.

Схема устройства показана на рисунке. Его основа — микроконтрол­лер AT90S1200. Линии порта В ...

Основой предлагаемого читателям устройства послужили исходные коды прошивки микроконтроллера набора NM3311 МАСТЕР КИТ. Видимо, после того как фирма ATMEL сняла с производства микропроцессор AT90S2313, руководство МАСТЕР-КИТ посчитало нецелесообразным хранить в коммерческой тайне исходные коды ...

В этой статье рассматривается схемотехническое решение, устройство и конструкция DDS генератора (генератор с прямым цифровым синтезом формы сигнала) на микроконтроллере ATmega16 фирмы Atmel. В приборе, кроме синтеза сигнала различной формы и частоты, реализуется возможность регулировки амплитуды и ...

Еще несколько лет назад прямые цифровые синтезаторы частоты (Direct Digital Synthesizers или DDS) были диковинкой с очень ограниченной областью применения. Их широкое использование сдерживалось сложностью реализации, а также недостаточно широким диапазоном рабочих частот.

Один инструмент, который отсутствовал в моей домашней лаборатории - это фунциональный генератор. Эти приборы, как правило дорогие, а возможности купить его у меня не было. Я подумал, что стоит попробовать самому собрать этот прибор. Я нашел довольно распространенный DDS чип(прямой цифровой синтез) ...

Основная идея проекта - исследовать силу гравитации. Игрушка сделана из половины мячя для пинг-понга. По окружности светится красная точка, которая всегда остается вверху. При вращении игрушки в любом направлении, как вы хотите - красная точка всегда будет подниматься снова. Видео показано ниже:

...

“SignALL” – GSM сигнализация (далее по тексту “устройство”), предназначена для охраны помещений, таких как квартиры, дачи, гаражи и т.д. в составе мобильного телефона Siemens. Отличительной особенностью данного уcтройства является то, что оно в отличие от других подобных схем, оно является ...

Увидев несколько устройств в сети, которые управляют светодиодами в зависимости от нагрузки на процессор, я решил создать свою собственную схему, так как другие выглядят не очень совершенно. Изначально планировал чтобы девайс общался с ПК по шине USB при помощи TTL последовательного ...

Контроллер работает со светодиодными лентами RGB, которые сейчас очень популярны и ими легко декоративно выделить потолки, лестницы, зеркала и полки в ванных комнатах, кухнях и т.д. Система управления разделена на две части: контроллер, основанный на микроконтроллере ATtinny2313 и питающий/силовой ...

Этот контроллер способен управлять отдельным RGB светодиодом или светодиодной лентой используя пульт дистанционного управления стандарта RC5. Устройство построено на базе распространенных компонентов: микроконтроллер Attiny2313 фирмы Atmel, инфракрасный приемник TSOP1736, стабилизатор LM7805, кварц ...

Ночник сделан из корпуса старого китайского светильника, быстросменяющиеся световые эффекты и быстрое перемигивание светодиодов было заменено на плавный перебор цветов радуги. Плата заменена на новую, и был использован RGB светодиод, управляет которым микроконтроллер Attiny2313. При ...

Термометр является HID-устройством (Human Interface Device). Термометр собран на популярном и относительно недорогом микроконтроллере ATtiny2313 (AT90S2313), непосредственно измерением температуры занимается интегральный термометр DS18B20 (или DS18S20).

С помощью описанного ниже простого прибора автолюбитель сможет за несколько минут проверить и отрегулировать начальную установку угла опережения зажигания на своем автомобиле, а также проверить работоспособность центробежного и вакуумного регуляторов.

Появление в продаже мощных светодиодов, ...

Автономные системы охраны получили достаточно широкое распространение в нашей стране из-за простоты и дешевизны. Классическая простейшая автономка представляет из себя вандалоустойчивый ящик с сиреной, скрытно устанавливаемый тумблер или кнопку для отключения сирены и дверной магнитоконтактный ...

Это мультиметр предназначен для измерения напряжения и тока в блоках питания. Шунт от 0,05 Ома до 2 Ом должен быть включен последовательно с нагрузкой. Может питаться от измеряемого напряжения основного блока питания в пределах 12-30 Вольт.

  • "Бегущий огонь" с автореверсом

    Предлагаемое ...

  • 8-ми канальная система инфракрасного дистанционного управления
    8-ми канальная система инфракрасного ...

    Основой ...

  • DDS генератор на ATmega16
    DDS генератор на ATmega16

    В этой статье ...

  • DDS генератор на Atmega48
    DDS генератор на Atmega48

    Еще несколько лет ...

  • DDS генератор сигналов на AT90USB162 и AD9833 управляемый по USB
    DDS генератор сигналов на AT90USB162 и AD9833 ...

    Один инструмент, ...

  • Gravitron
    Gravitron

    Основная идея ...

  • GSM сигнализация + Touch Memory на Attiny2313
    GSM сигнализация + Touch Memory на Attiny2313

    “SignALL” – GSM ...

  • RGB индикатор загрузки процессора компьютера на Attiny45
    RGB индикатор загрузки процессора компьютера на ...

    Увидев несколько ...

  • RGB контроллер на Attiny2313 с управлением на энкодере
    RGB контроллер на Attiny2313 с управлением на ...

    Контроллер работает ...

  • RGB контроллер с дистанционным управлением на Attiny2313
    RGB контроллер с дистанционным управлением на ...

    Этот контроллер ...

  • RGB ночник на Attiny2313
    RGB ночник на Attiny2313

    Ночник сделан из ...

  • USB-термометр на ATtiny2313
    USB-термометр на ATtiny2313

    Термометр является ...

  • Автомобильный стробоскоп
    Автомобильный стробоскоп

    С помощью ...

  • Автономная охранная система на базе Touch Memory
    Автономная охранная система на базе Touch Memory

    Автономные системы ...

  • АмперВольтметр на Atmega8
    АмперВольтметр на Atmega8

    Это мультиметр ...

Избранное "Устройства на MICROCHIP"

Таймер предназначен для отработки выдержки времени от 0 до 9999 секунд, с точностью 1 секунда. Во время отсчета показания индикатора уменьшаются и в любой момент можно посмотреть сколько еще секунд осталось до окончания заданного интервала.

С целью упрощения индикация и установка производится ...


Этот проект представляет собой 3-х канальную инфракрасную (ИК) дистанционную систему управления. Эта система работает на 12-bit  SIRC - сигналах, которые используются в пультах дистанционного управления фирмы Sony.


Часто при проверке цифровых сигналов или при отладке своих устройств необходим логический анализатор, тем более что все больше устройств разрабатывается на микроконтроллерах. Здесь рассматривается простое решение логического анализатора, который может использоваться для большинства цифровых ...


В этой статье представлена схема 4-х разрядного счетчика на PIC16F88 который имеет следующие характеристики:
- прямой и обратный счет
- сброс результата счета
- свободный счет или удержание при достижении заданного значения
- заданное количество разрядов
- сигнал на выходе контроллера при ...

Терморегулятор CH-1000 предназначены для управления системами регулирования температуры в пределах от - (минус) 50 до + 120 °С. Регулятор может использоваться как в системах отопления, так и в системах охлаждения с управлением компрессором. Регуляторы выпускаются в без корпусном исполнении ...

Описываемый ниже прибор позволяет в широких пределах измерять частоты электрических колебаний, а также ёмкость и индуктивность электронных компонентов с высокой точностью. Расширен предел измерения ёмкости до 10000мкФ.  Так же имеется встроенный генератор фиксированных частот до 1МГц.

Устройство предназначено для измерения малых сопротивлений, индуктивности, емкости и ЭПС конденсаторов. Функционально, схему можно разбить на 8 основных модулей:
- L/C генератор
- Блок источников стабильного тока (50mA/5mA/0.5mA)
- Блок, отвечающий за разряд испытуемого конденсатора
- Блок ...

Это проект полноцветного светодиодного индикатора уровня, который управляется по USB с компьютера на Windows 7 или Vista. Проект преследует несколько целей:

Во-первых, он показывает, как читать аудиоинформацию от машины на Windows и передавать эти данные через USB к устройству.
Во-вторых, он ...

Этот проект представляет собой RGB контроллер, который может быть настроен через соединение USB. Цвет подключенных светодиодов (общий анод) зависит от выбранного режима работы:

- Медленное изменение цвета (около 40 минут);
- Быстрое изменение цвета (около 2 минут);
- Изменение цвета по температуре ...

Все активнее светодиоды входят в нашу жизнь. Всё эффективнее становится светодиодное освещение. Всё ниже опускаются цены. Всё больше появляется возможностей получения сочных цветов, простоты в управлении. Всё чаще можно увидеть светодиоды в оформлении и декоративном освещении.

В этой статье мы ...

Power Pic RGB с дистанционным инфракрасным управлением это устройство, которое генерирует цвета с использованием RGB светодиода и может управляться с помощью любого инфракрасного пульта дистанционного управления протокола Sony SIRC.

Эта третья версия проекта Power Pic RGB, цель которой управлять ...

Светодиодные RGB - светильники используются для создания декоративной подсветки. Источниками света в них служат 3 светодиода красного, зеленого и синего цвета. Смешение цветов создает неповторимую световую картину с тысячами оттенков. Светодиоды являются энергосберегающими источниками света, и их ...

В устройстве предусмотрен ручной и автоматический режим индикации. Когда переключатель SA1 разомкнут действует автоматический режим, при этом цвета меняются с достаточно большой задержкой. Если SA1 замкнут работает ручной режим, где поворотом ручки потенциометра R4 выбирается подходящий цвет ...

24 светодиода, расположенные по кругу создают несколько световых эффектов. Управляет всем микроконтроллер PIC16F628. Скорость перемигивания светодиодов можно изменить путем смены кварца на разные частоты. Схема устройства представлена ниже. Также можно посмотреть видео работы автомата.

Предлагаемое автоматическое зарядное устройство (ЗУ) предназначено для зарядки батареи аккумуляторов номиналь­ным напряжением 12 В и емкостью 1 ...10 А-ч, но при небольшой доработке его можно применить для зарядки аккумуляторных батарей с другими напряжением и емкостью.

В ЗУ применен ...

  • 0-9999 секундный таймер на PIC12F683
    0-9999 секундный таймер на PIC12F683

    Таймер ...

  • 3-х канальная система инфракрасного дистанционного управления на PIC12F629
    3-х канальная система инфракрасного ...

    Этот проект ...

  • 4-канальный логический анализатор на PIC микроконтроллере
    4-канальный логический анализатор на PIC ...

    Часто при ...

  • 4-х разрядный счетчик импульсов на PIC16F88
    4-х разрядный счетчик импульсов на PIC16F88

    В этой статье ...

  • CH-1000 - терморегулятор с датчиком температуры DS18B20
    CH-1000 - терморегулятор с датчиком температуры ...

    Терморегулятор ...

  • FLC– метр/генератор на PIC16F628
    FLC– метр/генератор на PIC16F628

    Описываемый ниже ...

  • LCF - метр PIC18F2520+Nokia 3310LCD
    LCF - метр PIC18F2520+Nokia 3310LCD

    Устройство ...

  • RGB индикатор уровня на PIC18F2550
    RGB индикатор уровня на PIC18F2550

    Это проект ...

  • RGB контроллер с USB интерфейсом на PIC18F2550
    RGB контроллер с USB интерфейсом на PIC18F2550

    Этот проект ...

  • RGB контроллер с дистанционным управлением на PIC12F683
    RGB контроллер с дистанционным управлением на ...

    Все активнее ...

  • RGB контроллер с ИК ДУ на PIC12F629/675/683
    RGB контроллер с ИК ДУ на PIC12F629/675/683

    Power Pic RGB с ...

  • RGB светильник на PIC12F629
    RGB светильник на PIC12F629

    Светодиодные RGB - ...

  • RGB светильник на PIC12F675
    RGB светильник на PIC12F675

    В устройстве ...

  • Автомат световых эффектов на PIC16F628
    Автомат световых эффектов на PIC16F628

    24 светодиода, ...

  • Автоматическое зарядное устройство для АКБ 1-10 А-ч
    Автоматическое зарядное устройство для АКБ 1-10 ...

    Предлагаемое ...

Авторизация