В статье описан измеритель емкости неполярных и оксидных конденсаторов, выполненный на основе микроконтроллера PIC16F876A. Диапазон измерения емкости — 1...999-10 мкФ — разделен на два поддиапазона. Индикация результатов измерения производится трехразрядным светодиодным цифровым индикатором с автоматической установкой запятой. Некоторое влияние эквивалентного последовательного сопротивления на точность измерения на большем пределе компенсируется при калибровке прибора.
В радиолюбительской практике необходимость измерения больших значений электрической емкости очевидна. Многие современные мультиметры имеют функцию измерения емкости конденсатора, их верхний предел не превышает 20—100 мкФ, а при запредельном расширении диапазона существенно снижается точность измерения. Профессиональные RLC-метры измеряют емкость до 1 Ф и более, но ввиду своей высокой стоимости они мало доступны для большинства радиолюбителей.
Вместе с тем, используя современную элементную базу и основные физические соотношения, можно построить простой прибор, имеющий достаточно высокие метрологические характеристики. В предлагаемом устройстве используется принцип пропорциональности заряда Q электрической емкости С при фиксированном значении напряжения U: С = Q/U; где Q = It. В свою очередь, при заданном токе зарядки заряд конденсатора пропорционален времени протекания зарядного тока.
Технические характеристики
- Диапазон измерения, мкФ .. .1...999-103
- Погрешность во всем диапазоне, %, не более..............±3
- Время измерения, с, не более ..........................2,5
- Выбор пределов измерения ………………………автоматический
- Число разрядов индикации.........3
- Напряжение питающей сети, В………………..220
- Потребляемая мощность, Вт, не более...................12
Основу прибора составляет микроконтроллер PIC16F876A , выполняющий все основные функции: управление процессом измерения, вычисление его результатов и отображение полученного значения измеряемой емкости на индикаторе.
Принципиальная схема прибора показана на рис. 1. После включения питания и инициализации микроконтроллера устройство работает в автоматическом режиме. Вывод RA0 сконфигурирован как вход компаратора, RA3 — вход образцового напряжения компаратора, RC0, RC1 — выходы управления источниками зарядного тока, RC2 — выход включения разрядки измеряемого конденсатора.
Цикл измерения начинается с разрядки конденсатора через транзистор VT2 и резистор R5. Затем включается источник зарядного тока, равного 1 мА, на транзисторе VT3. Напряжение на конденсаторе начинает увеличиваться. По достижении им значения примерно 1 В, равного образцовому напряжению на входе RA3, микроконтроллер DD1 останавливает процесс зарядки и фиксирует его продолжительность.
Если напряжение на измеряемом конденсаторе не достигнет образцового в течение 1,2 с, происходит переход на старший предел измерения: включается источник тока, равного 1 А, на транзисторе VT1, индикация "х1000" и измерение повторяется. Далее микроконтроллер вычисляет значение измеряемой емкости по времени зарядки, зарядному току и напряжению на конденсаторе с учетом предела измерения и соответствующего ему калибровочного коэффициента. Цикл измерения периодически повторяется.
Динамическая индикация результатов организована на трехразрядном светодиодном индикаторе HG1—HG3, транзисторах VT5—VT7 и портах микроконтроллера RC3-RC5, RB0-RB7 по классической схеме.
Кнопки SB1—SB3, подключенные к портам RA1, RA2, RA5, служат для ввода калибровочных коэффициентов при настройке и поверке прибора. Кнопка "Режим" — вход в режим калибровки, выбор коэффициента, переход в режим измерения.
Кнопки "+" и "-" — установка значения выбранного коэффициента в пределах от 1 до 255. Калибровочный коэффициент для диапазона "мкФ" отображается без десятичных запятых, для "мкФх1000" — с запятой в разряде единиц. Установленные значения автоматически записываются в память микроконтроллера, сохраняются там после отключения питания и считываются при включении прибора.
Настройку прибора начинают до установки микроконтроллера в панель на плате. Включают питание выключателем SA1 и проверяют наличие и правильность подачи напряжения питания 5 В на контакты панели микроконтроллера. Напряжение на контактах 1-3, 7 должно быть примерно равно напряжению питания, на контактах 14-16 - около 4 В, а на 21-28 напряжение близко к нулю. Затем проверяют работоспособность кнопок SB1— SB3: нажимая их, контролируют появление низкого уровня на входах RA1, RA2, RA5. Цепи динамической индикации проверяют последовательным подсоединением общего провода к соответствующим выводам портов RB0-RB7 и RC3—RC5: при этом наблюдают свечение заданных сегментов в выбранном разряде. Источники тока включают поочередно подачей низкого уровня на контакты 11, 12, при этом амперметр должен быть подключен к гнездам ХЗ, Х4 вместо измеряемого конденсатора. При включении по цепи RC0 ток должен быть в интервале 0,5...1 мА; а по цепи RC1 - 0,5... 1 А. Цепь разрядки проверяют при включенном источнике тока 1 А подачей напряжения +5 В на контакт 13. Показания вольтметра, подключенного к гнездам ХЗ, Х4, при этом должны упасть до нуля.
Далее, после отключения питания, вставляют запрограммированный микроконтроллер в панель и включают прибор. На дисплее должны быть показания, близкие к нулю, индикатор "Цикл" (HL1) светится прерывисто, а индикатор "х1000" (HL2) не светится. Теперь можно произвести пробные замеры для оценки работоспособности прибора в целом.
Полученные результаты могут значительно отличаться от истинных в силу большого разброса параметров источников тока, погрешности установки образцового напряжения, ошибки компаратора, частоты установленного кварцевого резонатора и ряда других менее заметных факторов. Необходима калибровка прибора.
Для калибровки измерителя нужно иметь четыре образцовых конденсатора разных номиналов: два — для диапазона "мкФ" емкостью 100...900 мкФ, два — для диапазона "мкФ х1000" емкостью более 10000 мкФ. Для точно го определения их емкости желательно воспользоваться поверенным промышленным измерителем или каким-либо косвенным методом. Проводя измерения и изменяя калибровочные коэффициенты соответственно показаниям прибора, добиваются совпадения истинного значения емкости калибровочных конденсаторов и показаний прибора. После проведения калибровки прибор готов к эксплуатации
На старшем пределе измерения показания прибора в некоторой степени зависят от эквивалентного последовательного сопротивления (ЭПС) измеряемого конденсатора; это выражается в занижении истинного значения емкости. Чтобы погрешность прибора не превышала указанную, ЭПС не должно превышать 0,1 Ом. Для исправных оксидных конденсаторов емкостью более 1000 мкФ среднестатистическое значение ЭПС находится именно в этих пределах, его влияние компенсируется при калибровке прибора. Для более объективной оценки работоспособности оксидных конденсаторов необходимо совместное измерение емкости и ЭПС — это тема следующей разработки.
Опыт работы с описанным измерителем показал его хорошие потребительские характеристики: точность, долговременную стабильность показаний, удобство эксплуатации. Он позволяет проводить необходимые измерения, возникающие при разработке, изготовлении и ремонте электронного оборудования.
Источник: Радио №2, 2008 г. автор А. Топников, г. Углич Ярославской обл.
Архив для статьи "Измеритель емкости на PIC16F876A" | |
Описание: | |
Размер файла: 13.92 KB Количество загрузок: 2 024 | Скачать |
Комментарии
Про калибровку все написано в статье, читайте внимательней